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Abstract. The residual strength of a flat aluminium panel with five stringers, which contained a 
crack that divided the central stringer, was to be predicted during a Round Robin organised by ASTM. 
Crack branching occurred in the experiment, when the crack extended along the skin and into the 
stringers. The prediction has been achieved using finite element simulations including a cohesive 
model for crack extension. In a first step, the crack extension parameters, cohesive strength, T0, and 
cohesive energy, Γ0, were determined by numerical reproduction of the experimental data of the M(T) 
specimen. With the optimised parameters, the five-stringer panel was modelled. It turned out that the 
deviation of the predicted residual strength from the experimental value was below 9%. It will also be 
shown that shell elements cannot be used for this kind of simulation due to the high constraint in front 
of the crack tip, which leads to plastic collapse if plane stress conditions are presumed. 

 
 
1 INTRODUCTION 

Advanced methods for the prediction of residual strength and thus structural fracture 
assessment are often based on numerical approaches and use models for crack extension 
embedded in the simulation of the real component. One model that has gained increasing 
attraction is the cohesive model, which is based on an idea proposed by Dugdale [1] and 
Barenblatt [2] also in the early 60’s. The first one, who used the cohesive model in 
combination with the finite element method for the simulation of ductile failure in metals, was 
Needleman in 1987 [3]. The application to the assessment of metallic structures has been 
focused in several publications, see e.g. [4], [5]. 

Naturally, due to computational limitations, the cohesive model has been used for two-
dimensional simulations first, but in the late 90’s, when computers became more powerful, 
3D simulations were performed as well [6] - [9], which gave a more realistic approximation 
of the processes ahead of the crack tip. For example, the numerical reproduction of crack front 
tunnelling as shown in [9], is only possible by a 3D analysis. 

Thin-walled structures are also a point of interest for a couple of years, and so cohesive 
elements have been developed for plane stress and shell elements. The problem with these 
types of structures is that the thickness change cannot directly be accounted for in the 
cohesive elements, since the interface only consists of a line, which by definition has no 
thickness. Therefore, cohesive elements have been developed that were able to take the actual 
thickness of the adjacent plane stress or shell elements into account, see e.g. [10]- [13].  

Even though the cohesive model is in a state, in which it can be applied to complex 



Ingo Scheider 

engineering structures, this application field has gained only very little attention, see e.g. [14]. 
Therefore, the current investigation is aimed at demonstrating the applicability to components, 
for which the standard procedures cannot be applied with sufficient accuracy. 

The structure under investigation is a five-stringer panel, which is part of an ongoing 
Round Robin organised by ASTM. During the first phase of the Round Robin, three different 
panels machined from a monolithic Al 2024-T361 block, had to be analysed with respect to 
fatigue crack growth, but only one of them, shown in Figure 1, was tested for residual 
strength afterwards.  
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Figure 1: Five-stringer panel containing a crack that divides the central stringer. All dimensions in mm. 

For the elastic-plastic properties of the panel, only three distinct values were provided, namely 
the yield strength, σY = 342 MPa, the ultimate tensile strength, Rm = 485 MPa, and the 
elongation at ultimate strength, A = 18.3 %, were given for the material. The stress-strain 
curve is generated out of these values by the following procedure: The engineering values 
first were converted in true-stress – log-strain values, and then a power-law fit of the form 

(,0
n

Y Y Y )σ σ ε ε=  with σY,0 = 342 MPa, εY = 0.00503 and n = 0.14745 was employed to 
connect the yield and the ultimate tensile point. This constructed curve was then used for all 
subsequent simulations.  

The fracture properties of the material were given data determined by a test on an M(T) 
panel with a width of 2W = 400 mm, a thickness t = 6.44 mm and an initial crack length of 
2a0 = 103 mm. From this test three different values are measured: the force, F, the crack 
mouth opening displacement, COD, and the crack extension, Δa. Based on these data, the 
F(COD) curve and a COD(Δa) curve are used for numerical identification. 

2 NUMERICAL MODEL 
As outlined already, the cohesive model is utilised for the numerical crack extension 

analyses. It is implemented as a user-defined interface element for arbitrary material 
decohesion processes within the finite element code ABAQUS and obeys a so-called traction-
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separation law (TSL) as a constitutive behaviour, which relates the displacement jump vector 
between the two sides of the interface, δ, to the traction vector, T(δ), acting on the interface. 
In many cases the one-dimensional representation of the relation is sufficient, namely when 
only mode I fracture is concerned. The constitutive behaviour can then be written in the form 
TN = f(δN), in which the subscript N denotes the normal component of the separation and 
traction, respectively (and will be omitted further on). Many different laws have been used in 
the literature, see e.g. the overview given in [16]. The effect of the shape on the crack 
extension results are discussed e.g. in [17]. In the present investigation the function f  is 
described by the following equation [15]: 
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(1)

with δ1 = 0.01 δ0, and δ2 = 0.75 δ0 in all simulations. 
The interface elements are available for 2D, shell and 3D finite element models. Since the 

structure under investigation is a complex thin-walled one, the only choice is between shell 
and 3D modelling. The cohesive elements for shells are of line shape, such that the upper and 
the lower lines are defined by two nodes each. In the undeformed state these lines are on top 
of each other, i.e. they do not span a finite area. As already pointed out, the cohesive shell 
interface cannot account for a thickness change by default. However, the current 
implementation allows for transferring the out-of-plane deformation of the adjacent shell 
element to the cohesive element by internal variables via user programming, see [11]. For 
three-dimensional structures, the interface is defined by 2D elements with 8 nodes, which 
again do not span a volume in the undeformed state. 

3 FINITE ELEMENT MODELLING 
Structures, which might be regarded as thin walled, are commonly modelled by shell 

elements in industrial applications due to cost and time saving requirements. Therefore the 
use of shell elements is favoured in the present case.  

The task is to predict the mechanical behaviour of the five-stringer panel by numerical 
simulations. In order to do so, the parameters for the cohesive model have to be identified 
first, which will be performed by reproducing the experimental F(COD) curve and the 
COD(Δa) curve of the M(T) specimen. This two-parameter fitting process much depends on 
experience, and no optimisation procedure has been employed, but the adjustment is 
performed by trial and error only.  

3.1 Parameter identification 

One quarter of the M(T) specimen is to be modelled due to symmetry. A line of cohesive 
elements is placed along the ligament consisting of 160 cohesive elements with a length of 



Ingo Scheider 

0.25 mm, thus allowing for 40 mm crack extension. The mesh consists of 2903 linear shell 
elements, and the total number of degrees of freedom is 18789. 

Force, COD and crack extension are evaluated and the optimal parameters are identified 
based on the COD(Δa) curve, leading to Γ0 = 13 kJ/m² and T0 = 730 MPa. With these values, 
the critical separation writes δ0 = 0.020 mm.  

The corresponding curves from the simulation with these parameters are shown in Figure 2 
indicating a very good agreement between experiment and simulation.  
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Figure 2: Comparison between experiment of the M(T) specimen and simulation with optimized parameters; 

a) F(COD) curve; b) COD(Δa) curve. 

3.2 Application to the stiffened structure 

The parameter identification revealed that both the global F(COD) curve and the COD(Δa) 
curve can be reproduced and thus the use of shell modelling seems to be possible, and a shell 
mesh is generated for the five-stringer panel of Figure 1. Due to symmetry only one quarter of 
the structure is to be modelled. The clamping region at the top of the structure is assumed to 
have little effect on the result of the simulation and is therefore not modelled. A vertical 
displacement is prescribed, instead, where this region begins. The quantities that are evaluated 
from the simulation are: force, F, crack extension, Δa, and crack opening displacement (COD) 
as shown in Figure 3

The experimental σappl(COD) curve with σappl = F/A being the applied stress 
(A = 5110 mm² is the cross section of the uncracked structure), have been provided by ASTM 
after completion of the round robin for comparison with the numerical results. 

Shortly after initiation, the crack branches into skin and stringer; therefore cohesive 
elements must be placed along both lines. Since it is not known how much crack extension 
can be expected before maximum load, the cohesive elements were placed in the whole 
stringer and 40 mm along the skin. With a cohesive element length of approx. 0.25 mm this 
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leads to 161 elements along the skin and 102 elements at the stringer. The number of shell 
elements in the model is 8782, which gives 56070 DOFs in total. 

 
Figure 3: Shell finite element mesh for the five-stringer panel (one quarter of the original structure due to 

symmetry). 

Though the same parameters and a similar finite element mesh size are used as for the 
M(T) panel, the simulation reveals that a realistic prediction of the structural response is not 
possible with the shell model. As shown in Figure 4, strain localisation occurs in the shell 
elements adjacent to the cohesive surface, which leads to local softening instead of crack 
extension. The reason for this behaviour is 
that high normal stresses in crack opening 
direction together with low triaxiality due 
to the plane stress assumption lead to high 
plastic straining and subsequent plastic 
collapse of the elements ahead of the crack 
tip. In reality, however, plasticity is 
reduced by the high constraint at the crack 
tip. Therefore, even though the structure 
may be regarded as thin walled by the 
geometrical and structural definition given 
in the introduction, it cannot be modelled 
by shell elements due to the violation of 
the mechanical plane stress condition in 
the crack tip region 

 

Figure 4: Pathological deformation in the shell elements 
adjacent to the cohesive layer due to stress localization 

and softening, which inhibits crack extension. 
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4 3D FINITE ELEMENT MODELLING 
The previous section showed that it is not possible to model the five-stringer panel with 

shell elements. The only possibility to take the stress state at the crack tip into account is to 
model the structure with 3D continuum elements, even though this means a vast increase in 
the model size and thus computation time. A small reduction of the problem may be achieved 
by coupling a 3D mesh for the crack tip region to a shell mesh for the global structure, but 
since approximately 90% of all elements are placed along the ligament, the savings are not 
worth the additional meshing effort. 

According to the results achieved by Zavattieri [13], which correspond to the authors’ 
experience, the parameters determined by a 3D simulation are different from those determined 
by a shell simulation. Therefore, if the prediction is performed with a specific element type, 
the same type has to be used for the parameter identification of the material. 

The 3D FE model of the M(T) specimen represents one eighth of the panel with three 
symmetry planes and consists of 30408 linear 3D elements.  15 layers of solid elements over 
the half thickness are generated in the ligament, varying between a width of 0.45 mm in the 
centre and 0.075 mm at the specimen surface, and their length being 0.15 mm. The cohesive 
surface consists of 15×200 = 3000 cohesive elements, thus allowing for a maximum crack 
extension of 30 mm. The whole model has 113472 degrees of freedom. 

The loading is applied by a prescribed displacement at the top of the specimen. As a result, 
the total force, F, COD and the crack extension, Δa, (averaged over the thickness) is 
determined. The comparisons between simulation and experiment with respect to the F(COD) 
and COD(Δa) curves are shown in Figure 5. The optimal parameter set for the 3D simulation 
is Γ0 = 20 MPa and T0 = 970 MPa, the critical separation resulting in δ0 = 0.024 mm. Both the 
cohesive strength and the cohesive energy are larger than those for the shell simulation. At 
least for the cohesive strength, this phenomenon has been reported already by Zavattieri [13]
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Figure 5: Parameter identification for the 3D FE model of the M(T) specimen. Comparison of simulation and 

experiment for the respective optimised parameter sets. 
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Due to the large computation time, the simulation was stopped after approximately 9 mm 
of crack extension. At this time, the force was very close to the residual strength of the 
specimen. Additionally, the results of an elastic-plastic simulation (without crack 
propagation) are shown in the F(COD) graph. From this curve, the effect of crack propagation 
becomes evident. 

The stress state in front of the crack tip is commonly characterised by the triaxiality 
1

3 eqkkh σ σ= , which is shown in Figure 6 at the time of crack initiation (left) and at the end 
of the simulation (right). One can see that the maximum triaxiality is higher at initiation than 
at the end of the simulation, but the region of triaxiality h > 2/3 (bordered by black lines) 
increases during crack extension. For a structure under plane stress condition, i.e. the out-of-
plane stress component being zero, the triaxiality cannot exceed h = 2/3. It is obvious that the 
actual stress state with a triaxiality up to h = 1.5 cannot be characterised locally as plane 
stress. Even though it was possible to reproduce the results of the M(T) specimen with shell 
elements (see above), the transferability of the parameters is highly questionable, if the high 
triaxiality is not taken into account. 

 
Figure 6: Local triaxiality of the M(T) specimen ahead of the crack tip. Left: at crack initiation; right: at end of 

simulation. The thicker black polygon indicates the region in which the triaxiality is higher than 2/3.  

For the second step, the simulation of the stiffened panel, a 3D finite element model 
containing one quarter of the whole structure, shown in Figure 7, has been generated. The 
same region as for the shell mesh has been supplied with cohesive elements, but now 15 
elements over the stringer thickness and 24 over the skin thickness are introduced, which 
leads to 4625 cohesive elements in total with a size of approx. 0.3×0.3 mm² each. The whole 
structure contains 41294 3D elements and has 170397 DOFs.  
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Figure 7: 3D finite element mesh for the five-stringer panel (one quarter due to symmetry). 

The comparison of the simulation with the experiment is shown in Figure 8. The residual 
strength in the simulation is 135 MPa compared to 148 MPa in the experiment, which is a 
deviation of less than 9%. It is worth 
noting that the prediction is conservative 
in the present case, which is an important 
point in structural assessment. However, it 
is not assured in general that the method 
will always yield conservative results.  

6 CONCLUSION 

It has been shown that the cohesive 
model is able to predict crack extension 
and residual strength of complex 
structures. The approach follows a two-
step procedure: First the cohesive 
parameters have been determined by 
simulation of an M(T) specimen and 
fitting of the numerical results to the 
experiment, and subsequently a five-
stringer panel has been simulated with the 
optimised parameter set. The results show 
that the parameters can be transferred from 
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Figure 8: Comparison of the global applied stress vs. 
COD curves between experiment and 3D simulation. 
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fracture mechanics specimens to structures and yield realistic predictions. 
The residual strength has been predicted by three participants in a Round Robin organised 

by ASTM. Two used a J-integral approach for the assessment, but the cohesive-model 
simulation presented here was closest to the experimental result; the maximum stress in the 
simulation was 135 MPa (compared to 148 MPa in the experiment), whereas the other two 
participants predicted 129 MPa and 120 MPa, respectively.  

The predictions based on conventional fracture mechanics parameters as J or Keff face 
several problems: Firstly, J as a path integral cannot be calculated when structural or material 
inhomogeneities are present close to the crack tip, which is the case here due to the stringer 
connection. Likewise the stress intensity factor cannot be calculated since there is no valid K 
field in the neighbourhood of the stringer connection. In addition, no analytical solutions exist 
for fracture mechanics parameters in stiffened panels, if the crack approaches the joint. 

The cohesive model is able to describe any kind of material separation, even without a pre-
existing crack, and therefore no restrictions exist due to non-existing or non-valid fracture 
parameters. Thus, the main advantage is not mainly a higher accuracy compared to 
conventional fracture mechanics analyses, but the ability to predict complex geometries and 
crack shapes. Another argument in favour of this model is that local variation of the material 
properties as weldments with changed yielding behaviour or residual stresses can be 
considered in a simple way within the numerical analysis and simultaneously a stress analysis 
of the structure is delivered, which was used in the present case to determine the stress 
triaxiality in the crack tip region, for example. 

One important point is the applicability of shell meshes to thin walled structures containing 
cracks. Even though the global behaviour of the present structure is mainly plane stress, it has 
been shown that the stress state in front of the crack tip contains a region with a triaxiality 
higher than σh/σeq = 1.5. Since such high triaxialities cannot be accounted for by a shell 
theory, shell elements must not be used. In the present case the shell simulation of the 
stiffened panel with cohesive parameters determined by the M(T) specimen did not lead to 
crack extension, but to plastic collapse of the shell elements adjacent to the ligament. 
However, for 3 mm thick aluminium material, transferability has been shown from C(T) 
specimens to M(T) and cruciform specimens, see [12].  

The 3D simulation was rather costly in terms of meshing and simulation time, indeed, but 
the good agreement between experiment and simulation justifies the effort. The amount of 
crack extension before maximum load may be very large especially in thin walled structures, 
such that many (in the present case more than 4500) cohesive elements had to be inserted into 
the model, but computer power is steadily increasing and therefore this issue will diminish in 
the future.  
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